Skip to content

ProfoundQa

Idea changes the world

Menu
  • Home
  • Guidelines
  • Popular articles
  • Useful tips
  • Life
  • Users’ questions
  • Blog
  • Contacts
Menu

What is the antiderivative of square root of x 1?

Posted on November 9, 2022 by Author

Table of Contents

  • 1 What is the antiderivative of square root of x 1?
  • 2 What does it mean to evaluate the integral?
  • 3 What is integral integration in calculus?
  • 4 How do you integrate E√XDx by substitution?
  • 5 What is the definite integral of f(x)?

What is the antiderivative of square root of x 1?

In order to find the integral of sqrt(x-1), you will have to do a u substitution. In this case, u=x-1. Take the derivative of u to get du=1. The integral will then just become sqrt(u).

What does it mean to evaluate the integral?

Evaluating a definite integral means finding the area enclosed by the graph of the function and the x-axis, over the given interval [a,b].

What is the integral of a root?

The numbers which satisfy the value of a polynomial are called its roots . The roots which are integers i.e not irrational or imaginary are called integral roots. The roots which are integers i.e not irrational or imaginary are called integral roots .

READ:   When did St Paul come to India?

What is integral integration in calculus?

Integration is an important tool in calculus that can give an antiderivative or represent area under a curve. The indefinite integral of f (x) f ( x), denoted ∫ f (x)dx ∫ f ( x) d x , is defined to be the antiderivative of f (x) f ( x).

How do you integrate E√XDx by substitution?

In order to integrate e√xdx by substitution, we would need the derivative of √x. We will introduce the derivative and see if that helps. (If it doesn’t help, we’ll try something else.)

How do you find the derivative of an indefinite integral?

Since the derivative of a constant is 0, indefinite integrals are defined only up to an arbitrary constant. For example,∫ sin(x)dx= −cos(x)+constant ∫ s i n ( x) d x = − c o s ( x) + c o n s t a n t, since the derivative of −cos(x)+constant − c o s ( x) + c o n s t a n t is sin(x) s i n ( x).

What is the definite integral of f(x)?

The definite integral of f (x) f (x) from x = a x = a to x = b x = b, denoted ∫b a f (x)dx ∫ a b f (x) d x, is defined to be the signed area between f (x) f (x) and the x x axis, from x= a x = a to x= b x = b. Both types of integrals are tied together by the fundamental theorem of calculus.

READ:   Can a VPN really hide your IP address if not how do you trace back?

Popular

  • Why are there no good bands anymore?
  • Does iPhone have night vision?
  • Is Forex trading on OctaFX legal in India?
  • Can my 13 year old choose to live with me?
  • Is PHP better than Ruby?
  • What Egyptian god is on the dollar bill?
  • How do you summon no AI mobs in Minecraft?
  • Which is better Redux or context API?
  • What grade do you start looking at colleges?
  • How does Cdiscount work?

Pages

  • Contacts
  • Disclaimer
  • Privacy Policy
  • Terms and Conditions
© 2025 ProfoundQa | Powered by Minimalist Blog WordPress Theme
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT